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The ability to sustain attention differs across people and changes
within a single person over time. Although recent work has dem-
onstrated that patterns of functional brain connectivity predict
individual differences in sustained attention, whether these same
patterns capture fluctuations in attention within individuals remains
unclear. Here, across five independent studies, we demonstrate that
the sustained attention connectome-based predictive model
(CPM), a validated model of sustained attention function, gen-
eralizes to predict attentional state from data collected across
minutes, days, weeks, and months. Furthermore, the sustained
attention CPM is sensitive to within-subject state changes induced
by propofol as well as sevoflurane, such that individuals show
functional connectivity signatures of stronger attentional states
when awake than when under deep sedation and light anesthesia.
Together, these results demonstrate that fluctuations in attentional
state reflect variability in the same functional connectivity patterns
that predict individual differences in sustained attention.

sustained attention | attention fluctuations | individual differences |
functional connectivity | predictive modeling

As anyone who has struggled to sit through an esoteric film or
reached the end of a paragraph without comprehending its

content recognizes, we do not sustain a continuous level of at-
tention at every point in time. Rather, we are frequently distracted
by our external environment and our own internal thoughts, and
our level of focus fluctuates—intentionally or not (1)—with fac-
tors including mindlessness, motivation, resource allocation, and
arousal (2).
Functional MRI (fMRI) studies in humans have linked these

moment-to-moment attention fluctuations to ongoing activity in
large-scale brain networks, including the default mode, dorsal
attention, and salience networks (3–8). A growing body of work
has also related changes in functional connectivity measured with
fMRI and intracranial electroencephalography to changes in
attentional and cognitive states (9–14). (Functional connectivity
is measured as the statistical dependence between neuroimaging-
signal time series in spatially distinct brain regions.) Functional
connectivity changes have also been related to changing states of
consciousness (15–17). The degree to which functional connectivity
dynamics reflect cognitive state dynamics rather than physiological
and measurement noise, however, is still debated (18–22). Fur-
thermore, despite these advances, cognitive neuroscience lacks a
comprehensive, quantitative measure of intraindividual differences
in sustained attention, or changes in attention over time.
In contrast to the discussions on functional connectivity dy-

namics, there is growing consensus that models based on individ-
uals’ unique patterns of static functional brain connectivity (i.e.,
their functional connectome) can predict individual differences
in abilities, including fluid intelligence (23, 24), working memory
(25–27), and attention (28–32). Static functional connectivity
differs from dynamic functional connectivity in that it provides a

single measure of functional brain architecture using an entire
neuroimaging-signal time series. The most extensively validated
connectome-based predictive model (CPM), the sustained attention
CPM (33), has generalized across six independent datasets to
predict individuals’ overall sustained attention function from func-
tional connectivity measured during rest and five different tasks
(33–37). Derived using a data-driven technique (38), the sustained
attention CPM comprises a distributed “high-attention” network of
functional connections, or edges, stronger in individuals with better
sustained attention function and a “low-attention” network of edges
stronger in individuals with worse sustained attention. In other words,
previous work shows that the sustained attention CPM, a model based
on static functional brain connectivity, predicts individual differences
in sustained attention function. These predictions can be generated
from either task-based or resting-state functional connectivity.
Do the sustained attention CPM’s high- and low-attention

networks, which predict a person’s overall ability to maintain
focus, also reflect fluctuations in attentional state? Evidence
does suggest that the sustained attention CPM is sensitive to at-
tention improvements following a pharmacological manipulation.
That is, healthy adults given a single dose of methylphenidate, a
common attention-deficit hyperactivity disorder treatment, show
higher high-attention network strength and lower low-attention
network strength than unmedicated controls (34). However, this
between-subjects study did not directly test whether changes in
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attention network strength mirror changes in attentional state, and
it remains an open question whether the same functional networks
that predict differences in attention between people also predict
differences in attention within a single person over time.
Here, in a series of experiments, we ask whether the

sustained attention CPM predicts a person’s attention task
performance—above and beyond predicting their overall level of
sustained attention function—during short experimental blocks
and fMRI sessions spread across days, weeks, and months. Fur-
thermore, we evaluate the model’s sensitivity to cognitive and
attentional state changes resulting from pharmacological in-
terventions by comparing task-free functional connectivity be-
fore and after the administration of two anesthetics, propofol
and sevoflurane, with different mechanisms of action (for re-
views, see refs. 39 and 40). Our results replicate findings that
the sustained attention CPM generalizes to novel individuals to
predict their average sustained attention function and, moreover,
demonstrate that the model predicts minute-by-minute, day-by-
day, and drug-induced changes in attentional state. Thus, the
same neuromarker predicts both inter- and intraindividual dif-
ferences in sustained attention, and fluctuations in functional
connectivity around a person’s mean “functional connectome
fingerprint” in part reflect fluctuations in behaviorally relevant
attentional states.

Results
Experiment 1: Sustained Attention Network Strength Predicts Minute-
To-Minute Attention Fluctuations. As a first step, to test whether
models predict fluctuations in sustained attention from functional
connectivity, we reanalyzed fMRI data from 25 individuals per-
forming a challenging sustained attention task (the gradual-onset
continuous performance task, or gradCPT) (41) reported in pre-
vious work (33). Each participant performed up to three runs of
the gradCPT during fMRI, and each run included four 3-min task
blocks separated by 32-s rest breaks. During the task, participants
saw city and mountain photographs continuously transitioning
from one to the next at a rate of 800 ms/image and were instructed
to press a button in response to city scenes (90%) but not to
mountain scenes (10%).
Mean gradCPT sensitivity (d′) was 2.11 (SD = 0.92). Mean SD

of d′ across task blocks was 0.50, and mean coefficient of vari-
ation (SD divided by the mean) of d′ across task blocks was 32%.
Individuals’ overall d′ scores were inversely related to their co-
efficients of variation (rs = −0.83, P = 2.09 × 10−6) but not to
their SD of d′ across task blocks (rs = −0.22, P = 0.28). Suggesting
that changes in d′ over time were, to some degree, consistent
across participants, performance fluctuations were significantly
albeit weakly correlated across individuals (mean pairwise Spearman
correlation between participants’ d′ time series = 0.083, P = 0.003
based on 10,000 permutations).
Predictions from task-block connectivity. Do brain-based models
trained to predict individuals’ average sustained attention function
also predict changes in sustained attention performance from one
minute to the next? To address this question, we trained models to
predict gradCPT performance in a subset of individuals and ap-
plied them to task-block data from a novel person to generate a
behavioral prediction for each block of gradCPT performance. If
the same model predicts differences in attention between indi-
viduals and differences in attention in a single person, predicted
and observed performance scores should be related within-subject.
If, in contrast, the model is only sensitive to a person’s overall or
average level of task performance, predicted and observed per-
formance scores will not be related within-subject.
To this end, to predict minute-by-minute gradCPT perfor-

mance from functional connectivity patterns, multiple functional
connectivity matrices were generated for each individual using a
268-node whole-brain functional atlas (42): one overall task matrix
from data concatenated across task runs, up to 12 task-block

matrices from volumes acquired during individual 3-min task
blocks, and up to 9 rest-break matrices using volumes acquired
during 32-s rest breaks. Next, using leave-one-subject-out cross-
validation, connectome-based models were trained to predict d′
using n − 1 participants’ overall task matrices. In every round of
cross-validation, the model was applied to each of the held-out
individual’s task-block matrices to generate block-specific d′ pre-
dictions. This prediction pipeline replicated that of ref. 33, except
that models were applied to the held-out participant’s task-block
matrices rather than to their overall task matrix (Methods).
Previous work confirmed that head motion is not significantly

correlated with d′ across individuals in this sample (ref. 33 and
Methods). However, there is a moderate within-subject relation-
ship between mean frame-to-frame head motion and d′ across task
blocks (mean within-subject rs = −0.31). Thus, the performance of
all models in Experiment 1 was evaluated with Spearman partial
correlations between predicted and observed block-wise d′ scores
controlling for mean frame-to-frame head motion.
At the group level, models trained on overall task matrices

generalized to predict task block-specific gradCPT performance
in unseen individuals (mean within-subject Spearman partial
correlation = 0.45, SD = 0.50; t24 = 5.10, P = 3.24 × 10−5; Fig. 1).
Predictions were significant at P < 0.05 in 8 of 25 participants
based on permutation tests. Importantly, these models, which
predict block-specific gradCPT performance, previously gener-
alized to predict participants’ mean performance over the course
of the entire scan session (33).
Predictions from rest-break connectivity. Task-based functional con-
nectivity measured during brief 3-min task blocks predicts block-
specific task performance in individual subjects. Task-free
functional connectivity patterns may also reflect transient at-
tentional states. To test this possibility, models trained on 24
participants’ overall task matrices were applied to each of the
left-out subjects’ rest-break matrices to generate a predicted d′
score corresponding to each rest break. Thus, the model gener-
ated six predictions for participants with two gradCPT runs and
nine predictions for participants with three. Because gradCPT
performance is not measured during rest breaks themselves,
model performance was assessed by correlating predictions with
the d′ scores from the preceding and following task blocks
(controlling for mean frame-to-frame head motion during rest
breaks with partial correlation). These models are referred to as
the “prebreak” and “postbreak” models, respectively.
Models trained on overall task matrices generalized to predict

left-out individuals’ performance fluctuations from functional
connectivity observed during task-free rest breaks. Model predic-
tions were significantly related to performance during the blocks
immediately following breaks (mean within-subject partial rs = 0.25,
SD = 0.56; t24 = 2.33, P = 0.029; Fig. 1). However, model predic-
tions were not significantly correlated with performance during the
blocks immediately preceding rest breaks (mean within-subject
partial rs = 0.16, SD = 0.51; t24 = 1.39, P = 0.18; Fig. 1). Predic-
tions were significantly related to postbreak behavior in 4 of 25
participants and to prebreak behavior in 3 of 25 participants.
As expected, behavioral predictions from task-block connectivity

patterns were more accurate than those from rest-break patterns
(task-block vs. prebreak: t24 = 2.20, P = 0.038; task-block vs. post-
break: t24 = 1.85, P = 0.077). However, predictions from rest-break
functional connectivity were not significantly more correlated with
postbreak than prebreak behavior (t24 = 0.48, P = 0.63). In other
words, although rest-break models significantly predicted upcoming
task performance but not past task performance, postbreak models
were not significantly more accurate than prebreak models. This
suggests that functional connectivity patterns observed during
midtask rest breaks may reflect local attentional state rather than
past or future attentional performance alone.
Individual differences in model performance. Task-block models more
accurately predicted attention fluctuations in participants with

3798 | www.pnas.org/cgi/doi/10.1073/pnas.1912226117 Rosenberg et al.
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higher coefficients of variation (rs = 0.58, P = 0.003). There was a
trend such that task-block models also better predicted perfor-
mance in individuals with lower overall d′ values (rs = −0.48, P =
0.017), although this relationship does not survive Bonferroni
correction for six post hoc comparisons (three models [task-
block, prebreak, postbreak] × two behavioral measures [d′, co-
efficient of variation]). Overall d′ and d′ coefficient of variation
values were not significantly related to prebreak or postbreak
model accuracy (P values > 0.19).
Predictive network anatomy. Because feature-selection and model-
building steps replicated those described in ref. 33, predictive
networks are identical to those reported previously. Briefly,
across the 25 rounds of leave-one-out cross-validation, networks
predicting better d′ scores included 1,279 to 1,540 functional
connections (mean = 1,426.7, SD = 73.9; “positive networks”),
and networks predicting worse d′ scores included 1,099 to 1,373
functional connections (mean = 1,251.1, SD = 68.1; “negative
networks”). The 757 edges common to all 25 positive networks
and the 630 edges common to all 25 negative networks comprise
the high-attention and low-attention networks, respectively (Fig.
2). The high- and low-attention networks are distributed across
the cortex, subcortex, and cerebellum and are robust to com-
putational lesioning methods that exclude predictive nodes and
edges in individual brain lobes and canonical functional networks
(33). Thus, the current results demonstrate that the same dis-
tributed pattern of functional brain connectivity that predicts
interindividual differences in sustained attention also predicts
intraindividual differences in attention.

Experiment 2: Sustained Attention Network Strength Predicts Session-
To-Session Changes in Attention Task Performance. Experiment 1
used leave-one-subject-out cross-validation (i.e., internal vali-
dation) to demonstrate that the same functional networks that
predict individual differences in sustained attention are sensitive
to fluctuations in attention across 3-min task blocks. Here, we
test whether a model defined using the full Experiment 1 dataset,
the sustained attention CPM, predicts session-to-session variability
in focus in completely new individuals. To this end, we analyzed
data collected as an independent group of 49 adults performed 10
min of the gradCPT during two MRI sessions approximately 3 wk

apart (45). In this external validation sample, mean d′ was 2.29
(SD = 0.77) in session 1 and 2.15 (SD = 1.00) in session 2. Per-
formance scores were correlated across sessions (rs = 0.71, P =
7.99 × 10−9) and did not significantly differ between session 1 and
session 2 (t48 = 1.40, P = 0.17). Head motion was not significantly
correlated with d′ in either session and did not significantly differ
between sessions (Methods).
Attention predictions. The sustained attention CPM was applied to
each participant’s session 1 and session 2 gradCPT matrices
separately to predict session-specific d′ scores. Briefly, sustained
attention CPM predictions are generated by inputting the differ-
ence between an individual’s high-attention network strength and
low-attention network strength into a linear model whose coeffi-
cients were defined in previous work (33). Model outputs corre-
spond to predicted gradCPT d′ scores. In the current sample,
predicted d′ scores were significantly correlated with true d′ scores
during the first (rs = 0.40, P = 0.0051) and second (rs = 0.69, P =
4.33 × 10−8) imaging sessions, demonstrating robust cross-dataset
generalization (Fig. 3A). Furthermore, predicted d′ was higher for
participants’ better vs. worse scan session (t48 = 3.51, P = 9.87 ×
10−4), and the session with the higher predicted d′ corresponded to
the session with the higher observed d′ in 33 out of 49 individuals
(67.3%; Fig. 3B). The difference in d′ between participants’ first
and second gradCPT sessions was also correlated with the differ-
ence in predicted d′ for these sessions (rs = 0.61, P = 5.39 × 10−6).
Thus, the same functional connectivity patterns that predict in-
dividual differences in sustained attention reflect subtle within-
subject changes in attentional performance, even in a highly
reliable task.

Experiment 3: Sustained Attention Network Strength Predicts Week-
To-Week Changes in Attention in a Single Individual. We next in-
vestigated whether the sustained attention CPM is sensitive to
within-subject variability in sustained attention observed over the
course of weeks and months. To this end, we analyzed a longitu-
dinal dataset described in previous work (46, 47). This dataset
consisted of 30 MRI sessions, each including a run of gradCPT
performance, from a single individual (a 56-y-old left-handed
male) collected over 10 mo. Across all sessions, the participant’s
mean gradCPT d′ was 2.42 (range = 1.30 to 4.45; SD = 0.85).

Fig. 1. Within-subject Spearman partial correlations between block-wise d′ scores and task-block and rest-break predictions, controlling for task-block or
rest-break head motion. Subject-level significance was determined with permutation testing. Group-level significance was assessed with a t test between
observed and mean null partial correlations between predicted and observed behavior (task-block model: P = 3.24 × 10−5; prebreak model: P = 0.18;
postbreak model: P = 0.029).
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Performance increased monotonically over the course of the ses-
sions (Spearman correlation between d′ and session number; rs =
0.53, P = 0.003). Due to hardware variability, mean gradCPT trial
length ranged from 738 to 800 ms (mean = 778 ms, median = 794
ms, SD = 24.8 ms), and there was a nonsignificant monotonic
relationship between trial length and d′, such that performance
was numerically higher on gradCPT runs with a slower stimulus-
presentation rate (rs = 0.28, P = 0.14). Mean frame-to-frame head
motion did not significantly correlate with d′ across sessions (rs =
0.20, P = 0.28).
Trait-like attention prediction.We first validated the sustained attention
CPM by applying it to predict this highly sampled individual’s av-
erage gradCPT performance, a trait-like measure of sustained
attention abilities. When the model was applied to the partici-
pant’s mean gradCPT functional connectivity matrix across all 30
sessions, predicted d′ was remarkably similar to true average
performance (predicted mean d′ = 2.37 vs. observed mean d′ =
2.42). Although standard statistical tests cannot be applied to
assess the significance of this single observation, we compared
prediction error (i.e., the absolute difference between observed
and predicted mean d′ values) to a distribution of null-model
prediction-error values. The null distribution was generated by
redefining a CPM in Experiment 1 using shuffled behavioral
scores 1,000 times and applying each null model to the Experi-
ment 3 participant’s mean gradCPT functional connectivity ma-
trix. The observed prediction error (0.054) was smaller than
91.6% of null-model prediction-error values.
The observed prediction error was also smaller than the ab-

solute prediction error of the task-based general linear model for
all but one participant in ref. 33, despite the fact that the current
dataset is an external validation sample collected with different
scan parameters (Fig. 4A). The lower absolute error here may
arise because the current dataset includes more fMRI data per
individual (165 min vs. 36 min) and/or reflects a more trait-like
estimate of the participant’s overall ability to maintain focus.
Furthermore, suggesting that prediction accuracy is not driven by
regression to the training set mean, predicted mean d′ is closer to

the participant’s true mean d′ than it is to the average d′ of all
training subjects (jpredicted mean d′ − observed mean d′j =
0.054; jpredicted mean d′ − training set mean d′j = 0.26).
State-like attention predictions.We next applied the sustained attention
CPM to data from each scan session separately to generate session-
specific d′ predictions. Predictions were positively correlated with
observed d′ values (rs = 0.42, P = 0.02; Fig. 4B), which reflect both
state-like and trait-like aspects of sustained attention. Predictions
remained significant when controlling for mean trial duration and
session number with partial correlation (partial rs = 0.39, P = 0.04).
As a post hoc analysis, given that mean trial duration was non-
normally distributed, we divided runs based on a median split of
trial duration and assessed predictive power separately in each
half. Predictions were significant in the 15 runs with faster trials
(rs = 0.66, P = 0.0095) but nonsignificant in the 15 runs with slower
trials (rs = 0.04, P = 0.88). Thus, the same networks that predict
individual differences in attention, block-to-block fluctuations in

A B

Fig. 3. (A) The sustained attention CPM generalized to predict gradCPT per-
formance during two neuroimaging sessions. Each participant is represented
with one gray dot corresponding to session 1 performance and one blue dot
corresponding to session 2 performance. (B) Difference in predicted per-
formance for each person’s better and worse task sessions. Values greater
than zero indicate that the model correctly predicted a higher score for
the better session.

Fig. 2. Functional connections (edges) in the high-attention and low-attention networks (33). Network nodes are grouped into macroscale brain regions; lines between
them represent edges. Line width corresponds to the number of edges between region pairs. Created using Circos (43). Adapted with permission from ref. 44.
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an internal validation dataset, and session-to-session variabil-
ity in an independent 49-person sample capture mean perfor-
mance and session-to-session fluctuations in a dense longitudinal
phenotyping sample.
Within-subject model comparison. In Experiments 1 to 3, we applied
the publication-preregistered sustained attention CPM to data
collected from the same individuals at different points in time.
This allows us to ask whether the same pattern of functional
brain connectivity that predicts differences in sustained attention
function between individuals also predicts variations in attentional
state. However, two open questions remain. First, would a model
trained to predict attention in one individual better capture
changes in that person’s sustained attention performance over
time? Second, would such a model generalize to a novel sample
to predict individual differences in sustained attention?
To address these questions, we trained a new CPM using the

Experiment 3 dense phenotyping sample with the approach de-
scribed in Connectome-based predictive modeling under Methods.
(We elected to use this sample as it includes the most data per
individual of the studies included here.) Specifically, we trained a
model using data from 29 of the participant’s 30 fMRI sessions
and applied it to data from the left-out session to predict that
session’s gradCPT performance. We repeated this process leaving
each session out once and then related observed and predicted
session-specific d′ values with Spearman correlation to assess
predictive power.
This new CPM (the “within-subject CPM”) predicted session-

specific task performance (rs = 0.46, P = 0.005 based on 1,000
permutations). By comparison, the sustained attention CPM—

which was trained to predict individual differences in gradCPT
performance in an independent group of people—showed similar
predictive power when applied to these data (rs = 0.42, P = 0.02).
Predictive power of the two models did not significantly differ
(Steiger z = 0.47, P = 0.64), suggesting the intriguing possibility
that models trained to predict individual differences in attention
capture attention fluctuations just as well as participant-specific
models trained to predict attention changes. However, training
data were not equated for factors including degrees of freedom
and behavioral variability, and this is a case study of a single
participant-specific model. Thus, future work is needed to directly
compare the predictive power and generalizability of models
trained to predict inter- vs. intraindividual differences in attention.
To ask whether a model that predicts changes in one person’s

attentional performance over time generalizes to predict atten-
tional abilities in a novel sample, we next applied the within-
subject CPM to task data from the Experiment 1 dataset (n =
25). The resulting predictions were significantly correlated with
observed d′ scores (rs = 0.68, P = 2.65 × 10−4). In other words, a
model trained to predict within-subject differences in gradCPT
performance generalized to a completely independent sample to
predict individual differences in performance.

Characterizing the anatomy of the within-subject CPM revealed
significant overlap with the original sustained attention CPM’s
high- and low-attention networks. The network that predicted
better gradCPT performance in the Experiment 3 participant in-
cluded 211 functional connections. Of these, 19 were included in
the sustained attention CPM’s high-attention network (P =
2.87 × 10−8), whereas only 3 were included in the low-attention
network (P = 0.51). The network that predicted worse gradCPT
performance in the Experiment 3 participant included 172
functional connections. Of these, 11 appeared in the sustained
attention CPM’s low-attention network (P = 5.88 × 10−5), and
none appeared in the high-attention network. Therefore, as
expected, there is significant overlap between both networks
predicting better performance and both networks predicting
worse performance. There is no more overlap than would be
expected by chance between networks predicting better per-
formance in one model and worse performance in the other.

Experiment 4: Propofol Modulates Sustained Attention Network
Strength. The sustained attention CPM captures within-subject
changes in sustained attention observed in data collected minutes,
days, weeks, and months apart. These attentional state changes
likely result from fluctuations in internal and external distraction,
as well as variability in neurocognitive states such as motivation
and sleepiness. To characterize the sensitivity of the sustained
attention CPM to a completely different kind of attentional state
change—one induced by pharmacological manipulation—we an-
alyzedMRI data collected from 21 adults while awake (eyes-closed
rest) and under deep sedation with propofol in the same imaging
session (dataset described in ref. 48). End-tidal CO2, a measure of
carbon dioxide concentration at the end of an exhalation, heart
rate, and head motion did not significantly differ between the
propofol and awake conditions (ref. 46 and Methods). Mean blood
pressure was lower in the propofol condition but fell within the
autoregulatory range (48).
As predicted, participants showed functional connectivity sig-

natures of stronger attention—higher high-attention network
strength and lower low-attention network strength—when awake
than when under deep sedation (high-attention network: t20 =
4.53, P = 2.03 × 10−4 [effect larger than effects on 93.07% of
same-size random networks]; low-attention network: t20 = −7.71,
P = 2.05 × 10−7 [effect larger than effects on 99.98% of same-size
random networks]; Fig. 5A). In other words, the sustained
attention CPM was sensitive to an anesthesia-induced atten-
tional and cognitive state change.
Demonstrating the relative specificity of propofol effects to a

priori attention networks, the low-attention network showed a
larger propofol effect than did any canonical resting-state network
(defined in ref. 23). The high-attention network showed a larger
propofol effect than all but within-default network connections,
medial-frontal network–frontoparietal network connections, and
visual I network–visual association network connections (Fig. 5B).

Experiment 5: Sevoflurane Modulates Sustained Attention Network
Strength. We replicated effects of anesthesia on the sustained
attention CPM’s high- and low-attention networks using an in-
dependent sample of 11 adults scanned while awake, under light
anesthesia with sevoflurane, and recovering from anesthesia
(dataset described in ref. 49). Head motion, heart and re-
spiratory rates, end-tidal CO2, and O2 partial pressure, a
measure of blood oxygen saturation, did not significantly differ
between the awake and sevoflurane conditions (ref. 48 and
Methods). Although systolic, diastolic, and mean blood pres-
sure decreased under anesthesia, these changes fell within the
autoregulatory range and were unlikely to have resulted in he-
modynamic changes (49).
As with propofol, participants showed higher high-attention

and lower low-attention network strength in the awake than the

Fig. 4. The sustained attention CPM generalized to predict an individual’s
mean gradCPT performance (A) as well as day-to-day fluctuations around
this mean (B).
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anesthesia condition (high-attention network: t10 = 2.15, P =
0.057 [effect larger than effects on 85.15% of same-size random
networks]; low-attention network: t10 = −3.37, P = 0.0071 [effect
larger than effects on 96.32% of same-size random networks];
Fig. 6A). High-attention network strength was higher during the
awake than the recovery scan (t10 = 2.27, P = 0.047) and did not
significantly differ between the anesthesia and the recovery scans
(t10 = −0.57, P = 0.58). Low-attention network strength was not
significantly different during the awake and recovery scans
(t10 = −1.56, P = 0.15), but there was a trend such that it was
lower during the recovery than the anesthesia scan (t10 = −2.14,
P = 0.058). Whole-brain analyses revealed stronger connec-
tivity between the medial-frontal and visual I networks and the
motor and visual association networks during the awake than
the anesthesia condition. Connectivity between the frontoparietal
and visual association networks was significantly stronger during
the anesthesia than the awake condition (Fig. 6B).
Network strength as a function of state change. Propofol and sevoflurane
are different anesthetic agents with different pharmacodynamic
effects. Whereas participants in the propofol study did not re-
spond to verbal call during the anesthesia condition (Experiment
4), participants in the sevoflurane study were only under light
anesthesia (Experiment 5). To characterize relationships between
the degree of anesthesia-induced cognitive and attentional state
change and attention network strength, we generated a pseudo-
dose–response curve by collapsing data across studies. State af-
fected high-attention (b = −0.57, SE = 0.15, F[3,48.9] = 9.61, P =
4.29 × 10−5) and low-attention (b = 0.91, SE = 0.14, F[3,2.0] =
24.64, P = 0.039) network strength, such that high-attention net-
work strength systematically decreased and low-attention network
strength systematically increased as state changes became more
dramatic (Fig. 7).

Discussion
Each person has a unique pattern of functional brain connec-
tivity, that, like a fingerprint, distinguishes them from a group
(23, 50). Unlike a fingerprint, however, this pattern predicts
cognitive and attentional abilities (31, 51) and changes on multiple
time scales (i.e., minutes, hours, days, development). Are these

changes meaningful—that is, do they reflect behaviorally rel-
evant changes in cognitive and attentional states?
Here, we tested whether a publication-preregistered model,

the sustained attention CPM, predicts both trait-like and state-
like measures of sustained attention. An internal validation (i.e.,
leave-one-subject-out) approach first revealed that functional
connectivity patterns observed during 3-min task blocks and 32-s
rest breaks predict individuals’ block-specific task performance
(Experiment 1). In other words, the same models that predicted
participants’ average task performance in previous work (33)
were also sensitive to block-to-block fluctuations in performance.
When applied to a 49-person external validation sample, a model
defined using the full Experiment 1 dataset—the sustained
attention CPM—not only predicted participants’ task perfor-
mance during two fMRI sessions but also predicted which
session had better performance and which session had worse
(Experiment 2). Moreover, when the sustained attention CPM
was applied to data from one individual’s 30 fMRI sessions, the
prediction based on his average functional connectivity pattern
reflected his average task performance and predictions based
on session-specific patterns reflected session-specific task
performance (Experiment 3). Finally, the sustained attention
CPM’s high- and low-attention networks were modulated by
sevoflurane and propofol, such that functional connectivity
signatures of better attention were observed when individuals
were awake than when they were under light anesthesia or deep
sedation (Experiments 4 and 5). Together, these findings dem-
onstrate that behaviorally relevant attentional states are reflected in
functional connectivity patterns calculated from less than 30 s of rest
data; that, when averaged over many scan sessions, functional
connectivity patterns provide highly accurate predictions of aver-
age sustained attention function; and that the same functional
connections that vary with sustained attention across individuals
also change with attentional state within individuals.
The sensitivity of the sustained attention CPM to within-

subject state changes suggests that the same functional brain ar-
chitecture that varies with differences in attention function be-
tween people also varies with differences in attention function
within individuals over time. In the dense phenotyping sample
from Experiment 3, the sustained attention CPM captured these

A B

Fig. 6. Effects of sevoflurane (sevo.) on functional network strength. (A)
High-attention and low-attention network strength during the awake
(preanesthesia), sevoflurane, and recovery (postanesthesia) conditions.
Network-strength values were z-scored within graph for visualization. Indi-
vidual dots represent individual participants, gray lines represent individual
participant network strength change, and solid black lines indicate group
mean change. (B) Differences in within-network and between-network
strength (i.e., summed functional connectivity) during the awake (pre-
anesthesia) and sevoflurane conditions. *P < 0.05/38.

A B

Fig. 5. Effects of propofol on functional network strength. (A) High-attention
and low-attention network strength during the awake and deep-sedation
conditions. Network strength values were z-scored within graph for visualiza-
tion. Individual dots represent individual participants, gray lines represent in-
dividual participant network strength change, and solid black lines indicate
group mean change. (B) Differences in within-network and between-network
strength (i.e., summed functional connectivity) during the awake and deep-
sedation conditions. Low-attention network strength differed by condition
more than any network pair in the lower right matrix; high-attention network
strength differed more than 33/36 pairs. *P < 0.05/38.
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within-subject state changes just as well as a model expressly trained
to predict session-specific performance in that sample (Experiment
3). That is, a model trained using data from 29 fMRI sessions from a
single participant to predict task performance during a left-out 30th
session did not significantly outperform a model trained using data
from 25 completely independent individuals. Although this result
reflects a single case study and so should be considered preliminary,
it suggests that models tailored to a single subject may offer only
modest benefits to predictive power when compared with models
trained on different subjects. Looking ahead, additional work can
test whether models trained to predict individual differences in
other cognitive processes also capture within-subject changes in
those processes and characterize the relative benefits of participant-
specific vs. participant-general models.
The current work aligns with a growing body of evidence that

changes in ongoing attention and cognition are reflected in
changes in functional connectivity. In particular, functional
connectivity dynamics measured with fMRI, particularly in the
default mode and dorsal attention networks, mirror changes in
task state (13, 52), task performance (10, 11, 14, 53), and self-
reported mind wandering (12, 54, 55). Furthermore, a recent
intracranial electroencephalography study in humans revealed
that default and dorsal attention network activity showed
greater lagged anticorrelation during periods of better
attention task performance and that dorsal attention activa-
tions preceded default mode deactivations (9). Complementing
these findings, our results demonstrate that the same func-
tional networks that predict individual differences in attention
in novel individuals also predict attentional states specific to
task blocks, fMRI sessions, and states of consciousness induced
by anesthesia. Furthermore, they suggest that attentional state-
relevant dynamics are not constrained to an a priori set of
canonical functional networks (e.g., the default mode, dorsal
attention, and salience networks, which do not dominate the
sustained attention CPM’s high- and low-attention networks)
(33) but rather span a distributed set of cortical, subcortical,
and cerebellar brain regions (Fig. 2).
At the same time as evidence for behaviorally meaningful

functional connectivity dynamics accumulates, work shows that
functional connection reliability is poor when measured in short
time windows (even up to 36 min of data from a single fMRI
session) (56) and that dynamics arise due to sources including
motion and sampling variability (57). How do we resolve these
discrepant observations? One possibility is that attentional state-
specific functional connectivity patterns have been previously
characterized as noise. That is, attention changes over multiple

time scales, and these changes are likely missed by analyses that
group task states regardless of behavioral performance or aver-
age performance over long periods of time. A corollary to this
suggestion is that functional connectivity patterns averaged over
long periods of time and multiple fMRI sessions better approx-
imate a person’s “true” connectome and better predict behavior
in part because they sample a wider range of a person’s possible
cognitive and attentional states. Importantly, we are not dis-
counting the serious and well-documented effects of physiolog-
ical and measurement noise on functional connectivity measured
at short time scales. Rather, we suggest that a person’s atten-
tional state is another statistically significant source of variability
in data-driven functional networks that predict attention. (Si-
multaneously, networks that predict other processes such as
emotional reactivity may fluctuate with changes in these states as
well.) In the future, multisession, multitask fMRI samples and
high-frequency behavioral sampling (e.g., ongoing task perfor-
mance, pupillometry) can help disentangle the contributions of
multiple sources of functional connectivity dynamics.
At first glance, the finding that functional network connec-

tivity predicts moment-to-moment and day-to-day differences in
attention stands in apparent contrast to work showing that the
organization of canonical functional brain networks reflects
stable individual differences rather than task states or day-to-day
variability (58). However, the results are not incongruous. First,
Gratton et al. (58) characterized the topography of canonical
networks such as the default and dorsal attention networks,
whereas we consider the strength of a distributed set of functional
connections selected to predict behavior with a data-driven ap-
proach. More importantly, however, Gratton et al. found that,
although task states and fMRI sessions are not dominant sources
of variability in functional network organization, they do have
significant effects. Thus, it is possible that collapsing across at-
tentional states within broader task states obscures behaviorally
relevant differences in network organization and that character-
izing networks during distinct periods of successful and unsuc-
cessful task performance could magnify these small but significant
effects. Future work characterizing the effects of task challenges
and pharmacological interventions (extrinsic state manipulations)
as well as attention fluctuations (intrinsic state manipulations)
on functional network organization and connectivity patterns
will further inform the sources of variability around each indi-
vidual’s average functional connectome fingerprint.
Together, the current work demonstrates that transient func-

tional connectivity patterns reflect local attentional states.
However, it remains an open question whether task-based or
resting-state functional connectivity patterns predict changes in
attention over longer periods of time, such as development and
aging. Looking ahead, testing the sensitivity of connectome-
based models to within-subject changes in attentional and cog-
nitive abilities over years and decades can inform the common
and distinct functional architecture of these processes across the
lifespan (59). Furthermore, building new models to predict de-
velopmental trajectories in abilities and behavior can provide
insights into the ways in which functional brain organization
reflects risk for or resilience to impairments such as attention-
deficit hyperactivity disorder, potentially informing early treatments
or interventions.
In sum, we show that a neuromarker of sustained attention

generalizes across five independent datasets to predict indi-
vidual differences in sustained attention as well as intrinsic and
pharmacologically induced attentional states from task-based
and task-free functional connectivity. Thus, functional connectivity
patterns reflect a combination of trait-like and state-like as-
pects of sustained attention, and, more broadly, dynamics in
functional connectivity in part reflect dynamics in attentional
and cognitive states.

Fig. 7. “Dose–response” curve relating attention network strength to the
intensity of state changes across two datasets. Raw network strength values
(summed Fisher z-transformed correlation coefficients) were normalized
within the high-attention network and low-attention network plots sepa-
rately. Boxes extend from the 25th to 75th percentiles and whiskers from the
minimum to maximum values. Horizontal lines correspond to group me-
dians. State changes were most pronounced in the “Deep sedation (propo-
fol)” condition, in which participants were under deep sedation and did not
respond to verbal call. Effects of anesthesia were less pronounced in the
“Light anesthesia (sevoflurane)” condition and lesser still in the “Recovery
(sevoflurane)” condition. Preanesthesia conditions, “Awake (propofol)” and
“Awake (sevoflurane),” are equivalent to task-free resting-state scans.
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Methods
Experiment 1: Sustained Attention Network Strength Predicts Minute-To-
Minute Attention Fluctuations.
Participants. Thirty-one right-handed, neurologically healthy adults with normal
or corrected-to-normal vision were recruited from Yale University and the
surrounding community to perform the gradCPT (41, 60, 61) and rest during
MRI data collection (dataset described in ref. 33). The study was approved by
the Yale University Institutional Review Board (IRB). All participants provided
written informed consent and were paid for their participation. Following
exclusion for excessive head motion (>2-mm translation or >3° rotation in all
functional runs) or insufficient coverage, data from 25 individuals were sub-
mitted to further analysis (13 females, 18 to 32 y, mean = 22.7).
Experimental design. The gradCPT, a test of sustained attention and inhibitory
control, was used to assess participants’ overall ability to maintain focus and
to track their attention fluctuations over time. During the gradCPT, grayscale
images of city (90%) and mountain (10%) scenes gradually transitioned from
one to the next every 800 ms. Participants were instructed to press a button
with their right index finger every time they saw a city scene but not to press
to mountain images. Because stimuli were constantly in transition, an iterative
algorithm was used to assign button-press responses to trials (33).

Scan sessions began with a high-resolution anatomical image acquisition
followed by a 6-min resting-state run, three 13-min, 44-s gradCPT runs, and a
second 6-min resting-state run. GradCPT runs included 8 s of fixation followed
by four 3-min task blocks interleaved with 32-s rest breaks. Resting-state runs
are not analyzed here.

For each task block (3 runs × 4 blocks/run = 12 blocks total), performance
was measured with sensitivity (d′), or the inverse of the standard normal
cumulative distribution function of the false alarm rate (incorrect presses to
mountains) subtracted from the inverse of the standard normal cumulative
distribution function of the hit rate (correct presses to cities). Overall
gradCPT performance was measured by averaging d′ values across blocks.
Imaging parameters and preprocessing. MRI data were collected at the Yale
Magnetic Resonance Research Center (MRRC) on a 3T Siemens Trio TIM system
using a 32-channel head coil. Functional runs included 824 (task) or 363 (rest)
whole-brain volumes acquired using a multiband echoplanar imaging (EPI)
sequence with the following parameters: repetition time (TR) = 1,000 ms,
echo time (TE) = 30 ms, flip angle = 62°, acquisition matrix = 84 × 84, in-plane
resolution = 2.5 mm2, 51 axial-oblique slices parallel to the anterior
commissure–posterior commissure (AC-PC) line, slice thickness = 2.5 mm,
multiband 3, acceleration factor = 2. Parameters of the anatomical magne-
tization prepared rapid gradient echo (MPRAGE) sequence were as follows:
TR = 2,530 ms, TE = 3.32 ms, flip angle = 7°, acquisition matrix = 256 × 256, in-
plane resolution = 1.0 mm2, slice thickness = 1.0 mm, 176 sagittal slices. A two-
dimensional (2D) T1-weighted image coplanar to the functional images was
also collected for registration.

Functional data were analyzed using BioImage Suite (62) and custom
Matlab scripts (Mathworks) as described previously (33). Motion correction
was performed using SPM8. Linear and quadratic drift, mean signal from the
cerebrospinal fluid (CSF) and white matter, and 24 motion parameters were
regressed from the data. Global signal was also included as a nuisance re-
gressor to reduce the confounding effects of motion (35, 63). Data were
temporally smoothed with a zero mean unit variance Gaussian filter (cutoff
frequency = 0.12 Hz).

Preprocessing steps were applied to data concatenated across task runs as
well as to data from each task block and rest break separately to maintain
independence between block- and break-specific functional connectivity
matrices (Functional connectivity matrix generation).

Because head motion can confound functional connectivity analyses, five
task runs and two rest runs with more than 2-mm head translation or 3°
rotation were excluded from analysis. As reported previously, mean frame-
to-frame displacement during gradCPT runs and average motion across
gradCPT runs did not correlate with d′ across individuals (jrj ≤ 0.1; P values ≥
0.62) (33).
Functional connectivity matrix generation. Functional network nodes were de-
fined with a 268-node atlas with cortical, subcortical, and cerebellar nodes
(42). The atlas was warped from Montreal Neurological Institute (MNI) space
into single-subject space via linear and nonlinear registrations between the
EPI images, coplanar scan, three-dimensional (3D) anatomical scan, and
MNI brain.

To generate whole-brain functional connectivity matrices, the mean fMRI
signal time course for each nodewas calculated by averaging the time courses
of its constituent voxels. The Pearson correlation between the average time
courses of every pair of nodes was computed and Fisher z-transformed to
yield symmetrical 268 × 268 matrices of functional connections, or edges.

To test whether the same functional networks that predict individual dif-
ferences in attention also predict attention fluctuations, we measured par-
ticipants’ overall pattern of functional connectivity during task engagement
as well as their connectivity patterns during shorter intervals over the course
of the task. To this end, for each participant, we calculated 1) a single overall
task matrix from data concatenated across task runs, excluding volumes col-
lected during rest breaks; 2) up to 12 task-block matrices from volumes ac-
quired during individual task blocks; and 3) up to 9 rest-break matrices using
volumes acquired during individual rest breaks (starting 6 s after break onset
and ending 3 s before the onset of the upcoming task block to reduce the
influence of task-related stimulus processing on rest-break connectivity).
Connectome-based predictive modeling. Previous analyses of these data dem-
onstrated that models based on patterns of functional connectivity observed
during the gradCPT—here, the “overall task matrices”—predict individual
differences in performance from both task-based and resting-state func-
tional connectivity (33). Furthermore, these same network models general-
ize to independent datasets to predict measures of attention and inhibitory
control including attention-deficit hyperactivity disorder symptoms, stop-
signal task performance, and Attention Network Task performance (33–35).

To test whether these samemodels predict not only differences in attention
between individuals but also differences in attention within single individuals
over time, we performed a variant of connectome-based predictive modeling
(38) using leave-one-subject-out cross-validation. In this pipeline, feature-
selection and model-building steps replicate those described in ref. 33, but
models are tested on different data from the held-out individual.

First, data from one individual were set aside, leaving overall task matrices
and overall d′ scores from the remaining 24 participants. Next, robust re-
gression between each edge in the overall task matrices (35,778 total) and d′
was performed across subjects. Edges related to behavior at P < 0.01 were
retained and separated into a positive tail (positive regression coefficients)
and a negative tail (negative regression coefficients).

For each participant in the training set, overall strength in the positive and
negative tails was calculated by summing their respective connections. The
difference in connectivity strength between the tails (positive tail strength–
negative tail strength) was used as a predictor in a linear regression of the
form d′ = aX + b. This model differs slightly from the general linear model
reported in ref. 33, in which positive and negative tail strength were in-
cluded as independent predictors. Here, the difference in strength between
the tails is used to avoid collinear predictors.

To test whether this model generalized to predict attention fluctuations in
previously unseen individuals, it was applied to each of the left-out participant’s
task-block matrices separately. That is, the difference between positive and
negative tail strength was calculated using data from each of the held-out
individual’s 3-min task blocks. The resulting difference scores (8 for partici-
pants with two gradCPT runs and 12 for participants with three) were input in
the model to generate a predicted d′ value for each task block. Model per-
formance was assessed by computing the Spearman partial correlation be-
tween the left-out individual’s predicted and observed block-specific d′ scores,
controlling for mean frame-to-frame head motion in each task block. The
prediction pipeline was repeated until every individual had been left out once.

If changes in task-based functional connectivity predict changes in at-
tention, task-free connectivity patterns may also reflect transient attentional
states. To test this possibility, the same model was applied to each of the left-
out subject’s rest-break matrices to generate a predicted d′ score corre-
sponding to each rest break (6 for participants with two gradCPT runs and 9
for participants with three). Model performance was assessed by correlating
predictions with the d′ scores from the preceding and following task blocks
since performance is not measured during the breaks themselves. Again,
partial correlations were used to control for mean frame-to-frame head
motion during rest breaks. These models are referred to as the “prebreak”
and “postbreak” models, respectively, throughout the text.

Of note, we used connectome-based predictivemodeling as our prediction
approach because a primary goal of the current work was to assess whether
the same model that predicts individual differences in sustained attention is
sensitive to within-subject changes in attentional state. Thus, we applied the
exact same model published previously to the current sample and the four
other external validation datasets described here. Comparisons between CPM
and multivariate techniques, such as support vector regression (38) and
partial least squares regression (32), have found numeric but not significant
differences in predictive power for sustained attention.
Significance testing. The significance of model predictions was evaluated at
both the individual and group levels. To determine whether models signifi-
cantly predicted fluctuating d′ in a single person, block-specific d′ scores were
shuffled 1,000 times and correlated with model predictions. This process
generated two null rs-value distributions per individual: one of null task-block
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predictions and one of null rest-break predictions. The significance of task-
block model predictions was calculated as P = (1 + number of null task-block rs
values ≥ observed task-block rs)/1,001. The significance of rest-break model
predictions was calculated as P = (1 + number of null rest-break rs values ≥
observed prebreak rs)/1,001 and P = (1 + number of null rest-break rs values ≥
observed postbreak rs)/1,001.

The significance of model predictions was also evaluated at the group-
level with paired t tests comparing observed within-subject rs values to the
mean of each participant’s null task-based or rest-break rs-value distribution.
Spearman correlation coefficients were Fisher z-transformed before aver-
aging; averaged z values were converted back to rs values for reporting.

Experiment 2: Sustained Attention Network Strength Predicts Session-To-Session
Changes in Attention Task Performance.
Participants and experimental design. Ninety-eight individuals (62 female, ages
18 to 35 y, mean = 22.9, SD=4.6) participated in a two-session neuroimaging
experiment designed to assess different aspects of attention and memory
(45). Ninety participants completed both sessions, which included 10-min
resting-state runs (two in session 1 and one in session 2); an Inscapes
movie run (one per session) (64); gradCPT, multiple object tracking, visual
short-term memory task runs (one per session; order counterbalanced across
participants and sessions); and an Attention Network Task run (one in ses-
sion 2). Participants provided written informed consent in compliance with
procedures approved by the Yale University IRB and were paid for their
participation.

GradCPT data from the 49 individuals with whole-brain coverage, d′ scores
within 3 SDs of the group mean, and acceptable levels of head motion
(<3 mm maximum displacement and <0.15 mm mean frame-to-frame dis-
placement) during session 1 and session 2 were analyzed here (34 female,
ages 18 to 32 y, mean = 23.3, SD = 4.2). For these individuals, fMRI sessions
were held approximately 3 wk apart (range = 5 to 133 d, mean = 20.4, SD =
25.1). The number of days separating sessions 1 and 2 did not correlate with
gradCPT performance on either day or with the difference between them
(jrsj < 0.066, P values > 0.65). No other data were tested, and this dataset has
not been published previously.
Imaging parameters and preprocessing. MRI data were collected at the Yale
MRRC on a 3T Siemens Prisma system using a 64-channel head coil. Functional
gradCPT runs included 600 whole-brain volumes acquired using a multiband
EPI sequence with the following parameters: TR = 1,000 ms, TE = 30 ms, flip
angle = 62°, acquisition matrix = 84 × 84, in-plane resolution = 2.5 mm2, 52
axial-oblique slices parallel to the AC-PC line, slice thickness = 2.5 mm,
multiband 4, acceleration factor = 1. Parameters of the MPRAGE sequence
were as follows: TR = 1,800 ms, TE = 2.26 ms, flip angle = 8°, acquisition
matrix = 256 × 256, in-plane resolution = 1.0 mm2, slice thickness = 1.0 mm,
208 sagittal slices.

Data were processed with AFNI (65). Preprocessing steps included the
exclusion of three volumes from the start of each run; censoring of volumes
in which more than 10% of voxels were outliers; censoring of volumes for
which the Euclidean norm of the head motion parameter derivatives
exceeded 0.2; despiking; slice-time correction; motion correction; and re-
gression of mean signal from the CSF, white matter, and whole brain as well
as 24 motion parameters. Functional images were aligned to their corre-
sponding skull-stripped high-resolution anatomical image via linear trans-
formation, and the anatomical image was aligned to MNI space. For each
session, a functional connectivity matrix was defined from gradCPT data as
described in Experiment 1.

d′ values were not significantly correlated with mean frame-to-frame
motion after censoring, maximum motion after censoring, or number of
frames censored (session 1: jrsj < 0.26, P values > 0.075; session 2: jrsj < 0.151,
P values > 0.30). Head motion and number of postcensoring volumes did not
differ between participants’ day 1 and day 2 gradCPT runs, their better and
worse gradCPT runs, or their predicted-better and predicted-worse gradCPT
runs (jt48j < 1.32, P values > 0.19).
Attention predictions. The model used for external validation, the sustained
attention CPM, was defined using the high-attention and low-attention
networks described in Predictive network anatomy for Experiment 1. Using
data from all 25 participants in the (33) sample, a linear regression of the form
d′ = aX + b was computed where X = high-attention network strength − low-
attention network strength. This model, the sustained attention CPM, was
applied, completely unchanged, to each participant’s session 1 and session 2
gradCPT matrix to generate two d′ predictions. Model performance was
assessed by rank-correlating predictions with d′ scores across individuals for
each session separately. A paired t test was applied to compare predictions for
participants’ better vs. worse session.

Experiment 3: Sustained Attention Network Strength Predicts Week-To-Week
Changes in Attention in a Single Individual.
Participant and experimental design. Thirty sessions of MRI data were collected
over 10 mo from a single individual (46, 47). Data were acquired at the Yale
MRRC on two identically configured Siemens 3T Prisma scanners using a 64-
channel head coil. The participant provided written informed consent in
accordance with a protocol approved by the Yale University Human Re-
search Protection Program (46).

During each scan session, six ∼6-min task runs and two 6-min, 49-s resting-
state fMRI runs (including initial shim time and 8 s of discarded acquisitions)
were collected. Tasks included the gradCPT (450 trials/run) as well as an n-back
task, stop-signal task, card-guessing task, “reading the mind in the eyes” task,
and movies task (46). Here, we restrict our analyses to gradCPT data. Atten-
tion was operationalized as gradCPT sensitivity (d′). Mean frame-to-frame
head motion during gradCPT runs was not significantly correlated with d′
across sessions (rs = 0.20, P = 0.28).
Imaging parameters and preprocessing. A high-resolution anatomical (MPRAGE)
scan was collected during the first session with the following parameters: 208
contiguous slices acquired in the sagittal plane, TR = 2,400 ms, TE = 1.22 ms,
flip angle = 8°, slice thickness = 1 mm, in-plane resolution = 1 mm2, matrix
size = 256 × 256. Functional images were collected using a multiband gra-
dient EPI sequence with the following parameters: 75 contiguous slices ac-
quired in the axial-oblique plane parallel to AC-PC line, TR = 1,000 ms, TE =
30 ms, flip angle = 55°, slice thickness = 2 mm, multiband = 5, acceleration
factor = 2, in-plane resolution = 2 mm2, matrix size = 110 × 110 (46).

Imaging data were analyzed using BioImage Suite and custom MATLAB
scripts. Motion correctionwas performed using SPM12.Whitematter and CSF
masks were defined in MNI space and warped into single-subject space using
linear and nonlinear transformations. Linear, quadratic, and cubic drift, a 24-
parameter motion model, mean signal from CSF and white matter, andmean
global signal were regressed from the data. Lastly, data were temporally
smoothed with a Gaussian filter (sigma = 1.55, cutoff frequency = 0.121
Hz) (46).

For each session, a functional connectivity matrix was generated from
gradCPT data as described for Experiment 1. Due to hardware variability,
mean gradCPT trial length ranged from 738 to 800 ms (mean = 778 ms,
median = 794 ms, SD = 24.8 ms). Thus, matrices were calculated from the
first 330 volumes of every run to account for differences in task duration.
Attention predictions. The sustained attention CPM was applied to the partic-
ipant’s gradCPT functional connectivity matrices to generate session-specific d
′ predictions. Model performance was assessed by rank-correlating predictions
with d′ scores across the 30 sessions.
Within-subject model network overlap. To compare the predictive power of the
sustained attention CPM to the predictive power of amodel trained to predict
within-subject changes, we built a new CPM using the Experiment 3 data
with the method described in Connectome-based predictive modeling for
Experiment 1 (Methods). Specifically, we used leave-one-session-out cross-
validation to predict session-specific gradCPT performance.

To assess the overlap between this new within-subject CPM’s component
networks and the original sustained attention CPM’s high- and low-attention
networks, we first retained functional connections that appeared in every
round of leave-one-session-out cross-validation. This revealed 211 functional
connections in the within-subject network predicting higher d′ scores and 172
functional connections in the within-subject network predicting lower d′
scores.

The significance of the overlap between the within-subject CPM networks
and the sustained attention CPM networks was determined with the
hypergeometric cumulative density function, which returns the probability of
drawing up to x of K possible items in n drawings without replacement from
an M-item population. This was implemented in Matlab as P = 1 – hygecdf(x,
M, K, n), where x is the number of overlapping edges, K is the number of
connections in the sustained attention CPM network of interest, n is the
number of connections in the within-subject CPM network of interest, and M
is the total number of functional connections (edges) in the matrix (35,778).

Experiment 4: Propofol Modulates Sustained Attention Network Strength.
Participants and experimental design. fMRI data were collected from 32 adults
while awake (eyes-closed rest) and under deep sedation in accordance with
research protocols approved by the Yale University IRB (13 female, ages 19 to
35 y; dataset described in ref. 48). Participants provided written informed
consent. After exclusion for excessive head motion (>0.15 mm mean frame-
to-frame displacement) in either condition, data from 21 participants
remained. Head motion did not differ between awake and deep-sedation
conditions (awake: 0.078 ± 0.04 mm, deep sedation: 0.077 ± 0.03 mm; t20 =
0.017, P = 0.99).

Rosenberg et al. PNAS | February 18, 2020 | vol. 117 | no. 7 | 3805

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
7,

 2
02

1 



www.manaraa.com

Imaging parameters and preprocessing. MRI data were collected at the Yale
MRRC on a 3T Siemens Trio TIM system using a 12-channel head coil. Two
functional runs collected during both the awake and deep-sedation condi-
tions included 210 whole-brain volumes acquired using an EPI sequence with
the following parameters: TR = 2,000 ms, TE = 30 ms, field-of-view (FOV) =
256 × 256 mm2, flip angle = 90°, matrix size = 64 × 64, 33 AC-PC aligned
slices, slice thickness = 4 mm, no gap. After data were collected during the
awake condition, propofol was infused intravenously to induce an anes-
thetized state (“deep sedation”) in which participants did not respond to
verbal call. During propofol infusion, a high-resolution MPRAGE scan was
collected with the following parameters: 176 contiguous sagittal slices, voxel
size = 1 mm3, FOV = 256 × 256 mm2, TR = 2,530 ms, TE = 3.34 ms, flip angle =
7°. A 2D T1-weighted image with the following parameters was also ac-
quired for the purpose of registration: TR = 300 ms, TE = 2.43 ms, FOV =
256 × 256 mm2, matrix size = 256 × 256, flip angle = 60°.

Imaging data were analyzed with SPM8 (slice-time correction and motion
correction), BioImage Suite (all other preprocessing steps), and custom
Matlab scripts. After the first 10 volumes of each functional run were dis-
carded, data were slice time-corrected, motion-corrected, and iteratively
smoothed to a smoothness of ∼6 mm full-width half-maximum. Covariates of
no interest were regressed from the data including linear and quadratic
drift, mean CSF, white matter, and gray matter signal, and a 24-parameter
motion model. Data were temporally smoothed with a Gaussian filter (cut-
off frequency = ∼0.12 Hz) (48). Time-series data were concatenated across
the two runs from the same condition. Functional connectivity matrices were
calculated from the awake and propofol conditions as described for
Experiment 1.
Network strength comparison. A paired t test was used to compare high-
attention and low-attention network strength in the awake and deep-
sedation conditions. Differences in attention network strength were com-
pared to differences in 10,000 same-size random networks. To further assess
the specificity of state-dependent differences, we also compared propofol
effects on high-attention and low-attention network strength to propofol
effects on functional connectivity within and between the medial-frontal,
frontoparietal, default mode, subcortical-cerebellar, motor, visual I, visual II,
and visual association networks (23).

Experiment 5: Sevoflurane Modulates Sustained Attention Network Strength.
Participants and experimental design. Neuroimaging data were collected in a
single imaging session from 14 adults (7 female, ages 22 to 34 y) while awake,
under light anesthesia, and during recovery after anesthesia (dataset described
in ref. 49). Data from three participants were excluded from the current
analysis due to missing data in one or more scan conditions or excessive head
motion during scanning (>0.2 mm frame-to-frame displacement). During the
preanesthesia awake condition, participants received pure oxygen through a
facemask. During the sevoflurane condition, participants received a mixture
of oxygen and sevoflurane (end-tidal concentration 1%, equivalent to 0.5
minimum alveolar concentration). In the postanesthesia recovery condition,
participants received pure oxygen again. Conditions were separated by
10-min transition periods, and participants were instructed to keep their eyes
closed throughout the study. All participants gave written informed consent,
and the Human Investigation Committee of the Yale School of Medicine
approved the study protocol. Mean frame-to-frame head motion did not
differ between the awake, sevoflurane, and recovery conditions (awake:

0.092 ± 0.06 mm; sevoflurane: 0.077 ± 0.06 mm; recovery: 0.099 ±
0.06 mm; all paired jt10j < 1.13, P values > 0.28).
Imaging parameters and preprocessing. MRI data were collected at the Yale
MRRC on a 3T Siemens Trio TIM system using a circularly polarized head coil
(49). Scan sessions began with a localizer followed by a 2D T1-weighted
anatomical scan (TR = 300 ms, TE = 2.43 ms, FOV = 256 mm, matrix size =
256 × 256, flip angle = 60°, 33 axial slices parallel to the AC-PC line, slice
thickness = 4 mm, no gap). Functional runs included 210 volumes and were
collected during the preanesthesia, anesthesia, and postanesthesia condi-
tions using a T2* sensitive gradient-recalled, single-shot EPI pulse sequence
(TR = 2 s, TE = 31 ms, FOV = 256 mm, flip angle = 90°, matrix size = 64 × 64,
33 slices parallel to the bicommissural plane, slice thickness = 4 mm, no gap).
High-resolution anatomical (MPRAGE) images were acquired in between the
anesthesia and postanesthesia conditions (176 contiguous sagittal slices, slice
thickness = 1 mm, matrix size = 256 × 256, FOV = 256 mm, TR = 2,530 ms,
TE = 3.34 ms, flip angle = 7°).

Datawere analyzedwith BioImage Suite. After the first 10 volumes of each
functional run were discarded, data were temporally and spatially realigned,
corrected to remove slice means and drift, and low pass-filtered at a cutoff
frequency of 0.08 Hz. Covariates of no interest were regressed from the data
includingmeanCSF andwhitematter signal and a six-parametermotionmodel.
Functional images were coregistered to the 2D anatomical image. The 2D
anatomical image was then registered to the 3D anatomical image, and the 3D
anatomical image was aligned to MNI reference space via nonlinear trans-
formation (49). Functional connectivity matrices were calculated from the
awake, sevoflurane, and recovery conditions as described for Experiment 1.
Network strength comparison. Changes in high- and low-attention network
strength as well as canonical resting-state networks were assessed as de-
scribed for Experiment 4.
Network strength as a function of state change. The relationship between cog-
nitive state and normalized attention network strength was assessed with a
linear mixed effects model using the lme4 package (66) in R. State, an ordered
factor with levels {rest, recovery, sevoflurane, propofol}, was entered into the
model as a fixed effect. Intercepts for datasets and participants nested within
datasets were included as random effects. The limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm (67), implemented with the optimx
package (68), was used for optimization. P values were obtained using
Type III Satterthwaite approximations with the lmerTest package (69).

Data Availability. Experiment 2 data are available at https://nda.nih.gov/
edit_collection.html?id=2402. Experiment 3 data are available at https://
openneuro.org/datasets/ds002372/versions/1.0.0 (46, 47). For inquiries
about data in Experiments 1 (33), 4 (48), and 5 (49), readers should contact
the original authors.
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